Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Prion ; 18(1): 40-53, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38627365

RESUMO

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas , Proteínas PrPSc/metabolismo , Inclusão em Parafina , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Príons/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Endopeptidase K , Anticorpos , Formaldeído
2.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38503894

RESUMO

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Animais , Bovinos , Humanos , Doenças Priônicas/diagnóstico , Doenças Priônicas/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patologia , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Encéfalo/patologia , Encefalopatia Espongiforme Bovina/patologia
3.
Mov Disord Clin Pract ; 11(4): 411-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258626

RESUMO

BACKGROUND: Genetic prion diseases, including Gerstmann-Sträussler-Scheinker disease (GSS), are extremely rare, fatal neurodegenerative disorders, often associated with progressive ataxia and cognitive/neuropsychiatric symptoms. GSS typically presents as a rapidly progressive cerebellar ataxia, associated with cognitive decline. Late-onset cases are rare. OBJECTIVE: To compare a novel GSS phenotype with six other cases and present pathological findings from a single case. METHODS: Case series of seven GSS patients, one proceeding to autopsy. RESULTS: Case 1 developed slowly progressive gait difficulties at age 71, mimicking a spinocerebellar ataxia, with a family history of balance problems in old age. Genome sequencing revealed a heterozygous c.392G > A (p.G131E) pathogenic variant and a c.395A > G resulting in p.129 M/V polymorphism in the PRNP gene. Probability analyses considering family history, phenotype, and a similar previously reported point mutation (p.G131V) suggest p.G131E as a new pathogenic variant. Clinical features and imaging of this case are compared with those six additional cases harboring p.P102L mutations. Autopsy findings of a case are described and were consistent with the prion pathology of GSS. CONCLUSIONS: We describe a patient with GSS with a novel p.G131E mutation in the PRNP gene, presenting with a late-onset, slowly progressive phenotype, mimicking a spinocerebellar ataxia, and six additional cases with the typical P102L mutation.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Príons , Ataxias Espinocerebelares , Humanos , Idoso , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Proteínas Priônicas/genética , Príons/genética , Ataxia Cerebelar/complicações , Ataxias Espinocerebelares/diagnóstico
4.
Mol Biol Rep ; 50(11): 9715-9720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812352

RESUMO

BACKGROUND: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS: The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS: In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Animais , Humanos , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Príons/genética , Proteínas Priônicas/genética , Mutação/genética , Sequenciamento de Nucleotídeos em Larga Escala
5.
Prion ; 17(1): 138-140, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705331

RESUMO

Gerstmann-Sträussler-Scheinker disease with a Pro-to-Leu substitution at codon 105 in the prion protein gene (GSS-P105L) is a rare variant of human genetic prion disease. Herein, we report the case of a patient with GSS-P105L, who showed serial changes in regional cerebral blood flow (rCBF) on single-photon emission computed tomography (SPECT). A 42-year-old woman, with an affected father presenting with similar symptoms, had a 1-year history of progressive gait disturbance, lower-limb spasticity, and psychiatric symptoms. Genetic analysis confirmed the diagnosis of GSS-P105L. Eleven months after disease onset, brain magnetic resonance imaging (MRI) showed bilateral frontal lobe-dominant cerebral atrophy without hyperintensity on diffusion-weighted imaging (DWI) sequences; meanwhile, SPECT revealed non-specific mild hypoperfusion. Follow-up MRI at 52 months after onset demonstrated progressive frontal lobe-dominant cerebral atrophy without hyperintensity on DWI, while SPECT revealed a marked decrease in rCBF in the bilateral right-dominant frontal lobe. Patients with GSS with a Pro-to-Leu substitution at codon 102 (GSS-P102L) have been reported to exhibit hyperintensity on DWI-MRI and a diffuse decrease in CBF with a mosaic-like pattern on SPECT, which is absent in patients with GSS-P105L, thereby possibly reflecting the differences in pathophysiology between GSS-P102L and GSS-P105L.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Feminino , Humanos , Adulto , Proteínas Priônicas/genética , Doença de Gerstmann-Straussler-Scheinker/diagnóstico por imagem , Doença de Gerstmann-Straussler-Scheinker/genética , Circulação Cerebrovascular/genética , Códon/genética , Mutação
6.
Sleep Med ; 108: 11-15, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302168

RESUMO

BACKGROUND: Gerstmann-Sträussler-Scheinker (GSS) is a rare prion disease with heterogeneous clinical presentation. Although sleep-related abnormalities are prominent and well-known in other prion diseases such as fatal familial insomnia and Creutzfeldt-Jakob disease, information on sleep is limited in GSS. METHODS: We evaluated sleep in three genetically confirmed GSS cases using clinical history, sleep scales and video-polysomnography. In addition, patients underwent neurological assessment, neurological scales, neuropsychological testing, lumbar puncture, brain MRI and brain 18F-FDG-PET. RESULTS: Two patients reported sleep maintenance insomnia attributed to leg stiffness and back pain while the remaining patient did not report sleep problems. Video-polysomnography showed normal sleep staging in all of them. Findings such as reduced sleep efficiency in two patients, a confusional arousal in one patient, obstructive apneas in one patient, and periodic legs movements in sleep in two patients were observed. CONCLUSIONS: In contrast to fatal familial insomnia, the normal sleep staging in GSS may suggest dissimilar involvement of the neuronal structures that regulate sleep. We found non-specific sleep alterations in GSS such as obstructive apneas and periodic leg movements in sleep which are of unknown origin and of uncertain clinical relevance. Studies including a larger number of patients, serial sleep evaluations and incorporating neuropathological assessment will further help to understand sleep in GSS.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Insônia Familiar Fatal , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Doença de Gerstmann-Straussler-Scheinker/patologia , Sono , Encéfalo , Apneia Obstrutiva do Sono/patologia , Síndromes da Apneia do Sono/patologia
7.
Artigo em Russo | MEDLINE | ID: mdl-36843471

RESUMO

Gerstmann-Sträussler disease (GSD) is a very rare autosomal dominant late-onset neurodegenerative disorder related to prion protein gene PRNP. Mutation p.Pro102Leu produces about 80% of cases, which are often named GSD-102. DNA testing provides exact diagnosis. In the presented Russian family there were 3 patients: a female index case, age 32 years, her brother, age 37 years (age of onset in both is 27 years) and their deceased father (onset in 35 years, death in 44 years). GSD was not suspected until whole exome sequencing in the female detected PRNP mutation p.Pro102Leu confirmed in her and in the brother by Sanger sequencing. Atypical features of the case are: early onset in siblings, absence of mental and behavioral problems in the female and in the father and mild disturbances in the brother; epilepsy in the brother; atypical onset with transient signs in the brother. Other intrafamilial differences are prevailing spastic paraparesis in the female in contrast to predominant ataxia in the brother and dysarthria absence in the female. The case illustrates GSD-102 variability, complicating clinical diagnostics.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Príons , Humanos , Masculino , Feminino , Adulto , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/complicações , Príons/genética , Proteínas Priônicas/genética , Mutação
8.
Prion ; 17(1): 37-43, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36847171

RESUMO

Gerstmann-Sträussler-Scheinker (GSS) disease is an autosomal dominant neurodegenerative disease, and it is characterized by progressive cerebellar ataxia. Up to now, GSS cases with the p.P102L mutation have mainly been reported in Caucasian, but rarely in Asian populations. A 54-year-old female patient presented with an unstable gait in the hospital. Last year, she was unable to walk steadily and occasionally choked, could not even walk independently gradually. After taking her medical history, we found that she was misdiagnosed with schizophrenia before the gait problems. The patient's father showed similar symptoms and was diagnosed with brain atrophy at the age of 56, but her daughter showed no similar symptoms at present. On arrival at the Neurology Department, the patient's vital signs and laboratory examinations showed no abnormality. As the proband presented with cerebellar ataxia and had an obvious family history, we were sure that she had hereditary cerebellar ataxia. Then, patient's brain MRI showed an abnormal signal in the right parietal cortex and bilateral small ischaemic lesions in the frontal lobe. A gene panel (including 142 ataxia-related genes) was performed, and a heterozygous mutation PRNP Exon2 c.305C>T p. (Pro102Leu) was identified. Her daughter had the same heterozygous mutation. The patient was diagnosed with GSS with mental disorders as initial symptoms. After 2 months of TCM treatment, the patient's walking instability decreased, and her emotional fluctuations were less than before. In conclusion, we have reported a rare case of GSS in Sichuan, China, and the family with mental disorder as the first symptom was finally confirmed with GSS PRNP P102L mutation.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Transtornos Mentais , Doenças Neurodegenerativas , Humanos , Feminino , Pessoa de Meia-Idade , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Ataxia Cerebelar/genética , Mutação , Proteínas Priônicas/genética
9.
J Neuropathol Exp Neurol ; 82(1): 38-48, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36331509

RESUMO

GPI anchorless prion diseases (GPIALPs) show numerous coarse prion protein (PrP) deposits in the CNS but neuropil spongiform changes are mild and the incidence of dementia is low. Here, we examined differences in resident microglial phenotypes between GPIALP (D178fs25) and the other prion diseases Gerstmann-Sträussler-Scheinker (GSS) disease and sporadic Creutzfeldt-Jakob disease (sCJD) with respect to homeostasis and activation. Immunohistochemistry was performed on 2 GPIALP (D178fs25), 4 GSS (P102L), and 4 sCJD cases. Homeostatic microglia expressing TMEM119 and P2RY12 were preserved in GPIALP compared to GSS and sCJD. Microglia/macrophage activation in GSS and sCJD was associated with the extent of spongiform change. Immunoelectron microscopy revealed TMEM119 and P2RY12 in PrP plaque cores. Activated microglia/macrophages expressing HLA-DR and CD68 were predominant in GSS and sCJD whereas in GPIALP, homeostatic microglia were retained and activated microglia/macrophages were rarely observed. These data suggest that PrP deposition in GPIALP is less toxic and that microglia may be immune-tolerant to PrP deposition. This may be associated with milder tissue damage and a low incidence of dementia. Whereas microglia/macrophage activation is considered to be a reaction to tissue injury, this study shows that the degree of microglia/macrophage activity might influence the extent of tissue damage.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Proteínas de Membrana , Microglia , Receptores Purinérgicos P2Y12 , Humanos , Síndrome de Creutzfeldt-Jakob/metabolismo , Doença de Gerstmann-Straussler-Scheinker/genética , Microglia/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
Biomolecules ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291746

RESUMO

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer's disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Animais , Humanos , Arvicolinae/genética , Códon , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Isoleucina/genética , Metionina/genética , Mutação , Fenilalanina , Presenilina-1/genética , Proteínas Priônicas/genética , Príons/genética , Serina
11.
Neurology ; 99(21): 957-961, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36127142

RESUMO

A 58-year-old previously healthy woman presents with 3 years of rapidly progressive ataxia, parkinsonism, dysautonomia, peripheral neuropathy, leg weakness, spasticity, hyperreflexia, and mild vertical-gaze palsy. She has a matrilineal family history of neurodegenerative diseases. She was initially postulated to have spinocerebellar ataxia or atypical parkinsonism with cerebellar features. However, on closer inspection, her abnormal extraocular eye movements suggested rare mimicking disorders such as prion disease as part of the differential diagnosis, requiring further evaluation. This case highlights how deep phenotyping can open new diagnostic considerations, inform additional workup, and yield the precise diagnosis of Gerstmann-Sträussler-Scheinker syndrome (GSS).


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Transtornos da Motilidade Ocular , Humanos , Feminino , Pessoa de Meia-Idade , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Doença de Gerstmann-Straussler-Scheinker/genética , Movimentos Oculares , Transtornos da Motilidade Ocular/diagnóstico , Ataxia
13.
Acta Neuropathol ; 144(3): 509-520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819518

RESUMO

Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-ß spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short ß-strands, with the ß1 and ß8 strands, as well as the ß4 and ß9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.


Assuntos
Amiloidose , Doença de Gerstmann-Straussler-Scheinker , Príons , Amiloide/metabolismo , Amiloidose/metabolismo , Encéfalo/patologia , Microscopia Crioeletrônica , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Fenilalanina/metabolismo , Placa Amiloide/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Subunidades Proteicas/metabolismo
14.
J Neurol ; 269(8): 4253-4263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294616

RESUMO

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Príons , Amiloide/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Mutação , Placa Amiloide , Príons/genética , Príons/metabolismo
15.
Neurol Sci ; 43(5): 3419-3422, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35129726

RESUMO

INTRODUCTION: Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. Unlike sporadic Creutzfeldt-Jakob disease, GSS has diverse clinical phenotypes, including slowly progressive cerebellar ataxia. Due to this clinical feature and the extreme rarity of GSS, the disease can be misdiagnosed as hereditary cerebellar ataxia. CASE REPORT: We present the first familial cases of GSS in South Korea. Previously affected family members were misdiagnosed with hereditary cerebellar ataxia. Two siblings (patients #1 and #2) of this family were genetically diagnosed with P102L mutation GSS. Another sibling (patient #3) was not genetically confirmed, but based on the clinical course and diffusion-weighted imaging (DWI), the diagnosis of GSS will be certain. Despite the same genetic mutation, these siblings showed different clinical phenotypes of GSS. CONCLUSIONS: We genetically confirmed familial cases of GSS in South Korea. Although the disease is extremely rare, the PRNP gene test should be considered in undiagnosed autosomal dominant hereditary cerebellar ataxia. Phenotypical variability of GSS may be reflected in DWI of the early phase of the disease.


Assuntos
Ataxia Cerebelar , Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Variação Biológica da População , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Doença de Gerstmann-Straussler-Scheinker/diagnóstico por imagem , Doença de Gerstmann-Straussler-Scheinker/genética , Humanos , Mutação , Proteínas Priônicas/genética
16.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614069

RESUMO

Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Príons , Humanos , Príons/genética , Doenças Priônicas/genética , Doenças Priônicas/diagnóstico , Japão/epidemiologia , Proteínas Priônicas/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Síndrome de Creutzfeldt-Jakob/genética , Mutação
17.
Rev Med Interne ; 43(2): 106-115, 2022 Feb.
Artigo em Francês | MEDLINE | ID: mdl-34148672

RESUMO

Prion diseases or transmissible spongiform encephalopathies (TSEs) are human and animal diseases naturally or experimentally transmissible with a long incubation period and a fatal course without remission. The nature of the transmissible agent remains debated but the absence of a structure evoking a conventional microorganism led Stanley B. Prusiner to hypothesize that it could be an infectious protein (proteinaceous infectious particle or prion). The prion would be the abnormal form of a normal protein, cellular PrP (PrPc) which will change its spatial conformation and be converted into scrapie prion protein (PrPsc) with properties of partial resistance to proteases, aggregation and insolubility in detergents. No inflammatory or immune response are detected in TSEs which are characterized by brain damage combining spongiosis, neuronal loss, astrocytic gliosis, and deposits of PrPsc that may appear as amyloid plaques. Although the link between the accumulation of PrPsc and the appearance of lesions remains debated, the presence of PrPsc is constant during TSE and necessary for a definitive diagnosis. Even if they remain rare diseases (2 cases per million), the identification of kuru, at the end of the 1950s, of iatrogenic cases in the course of the 1970s and of the variant of Creutzfeldt-Jakob disease (CJD) in the mid-1990s explain the interest in these diseases but also the fears they can raise for public health. They remain an exciting research model because they belong both to the group of neurodegenerative diseases with protein accumulation (sporadic CJD), to the group of communicable diseases (iatrogenic CJD, variant of CJD) but also to the group of genetic diseases with a transmission Mendelian dominant (genetic CJD, Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia).


Assuntos
Síndrome de Creutzfeldt-Jakob , Doença de Gerstmann-Straussler-Scheinker , Kuru , Doenças Priônicas , Animais , Síndrome de Creutzfeldt-Jakob/diagnóstico , Humanos , Doenças Priônicas/diagnóstico
18.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948096

RESUMO

Gerstmann-Sträussler-Scheinker syndrome (GSS) is a hereditary neurodegenerative disease characterized by extracellular aggregations of pathological prion protein (PrP) forming characteristic plaques. Our study aimed to evaluate the micromorphology and protein composition of these plaques in relation to age, disease duration, and co-expression of other pathogenic proteins related to other neurodegenerations. Hippocampal regions of nine clinically, neuropathologically, and genetically confirmed GSS subjects were investigated using immunohistochemistry and multichannel confocal fluorescent microscopy. Most pathognomic prion protein plaques were small (2-10 µm), condensed, globous, and did not contain any of the other investigated proteinaceous components, particularly dystrophic neurites. Equally rare (in two cases out of nine) were plaques over 50 µm having predominantly fibrillar structure and exhibit the presence of dystrophic neuritic structures; in one case, the plaques also included bulbous dystrophic neurites. Co-expression with hyperphosphorylated protein tau protein or amyloid beta-peptide (Aß) in GSS PrP plaques is generally a rare observation, even in cases with comorbid neuropathology. The dominant picture of the GSS brain is small, condensed plaques, often multicentric, while presence of dystrophic neuritic changes accumulating hyperphosphorylated protein tau or Aß in the PrP plaques are rare and, thus, their presence probably constitutes a trivial observation without any relationship to GSS development and progression.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Mutação de Sentido Incorreto , Proteínas Priônicas , Agregação Patológica de Proteínas , Adulto , Idoso , Feminino , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
19.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830321

RESUMO

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Doença de Gerstmann-Straussler-Scheinker/genética , Influenza Humana/genética , Insônia Familiar Fatal/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas Priônicas/genética , Animais , Linhagem Celular Tumoral , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Síndrome de Creutzfeldt-Jakob/virologia , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/virologia , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Insônia Familiar Fatal/metabolismo , Insônia Familiar Fatal/patologia , Insônia Familiar Fatal/virologia , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Conformação Proteica , Genética Reversa/métodos
20.
Alzheimers Res Ther ; 13(1): 176, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663460

RESUMO

BACKGROUND: More than 40 pathogenic heterozygous PRNP mutations causing inherited prion diseases have been identified to date. Recessive inherited prion disease has not been described to date. METHODS: We describe the clinical and neuropathological data of inherited early-onset prion disease caused by the rare PRNP homozygous mutation R136S. In vitro PrPSc propagation studies were performed using recombinant-adapted protein misfolding cyclic amplification technique. Brain material from two R136S homozygous patients was intracranially inoculated in TgMet129 and TgVal129 transgenic mice to assess the transmissibility of this rare inherited form of prion disease. RESULTS: The index case presented symptoms of early-onset dementia beginning at the age of 49 and died at the age of 53. Neuropathological evaluation of the proband revealed abundant multicentric PrP plaques and Western blotting revealed a ~ 8 kDa protease-resistant, unglycosylated PrPSc fragment, consistent with a Gerstmann-Sträussler-Scheinker phenotype. Her youngest sibling suffered from progressive cognitive decline, motor impairment, and myoclonus with onset in her late 30s and died at the age of 48. Genetic analysis revealed the presence of the R136S mutation in homozygosis in the two affected subjects linked to homozygous methionine at codon 129. One sibling carrying the heterozygous R136S mutation, linked to homozygous methionine at codon 129, is still asymptomatic at the age of 74. The inoculation of human brain homogenates from our index case and an independent case from a Portuguese family with the same mutation in transgenic mice expressing human PrP and in vitro propagation of PrPSc studies failed to show disease transmissibility. CONCLUSION: In conclusion, biallelic R136S substitution is a rare variant that produces inherited early-onset human prion disease with a Gerstmann-Sträussler-Scheinker neuropathological and molecular signature. Even if the R136S variant is predicted to be "probably damaging", heterozygous carriers are protected, at least from an early onset providing evidence for a potentially recessive pattern of inheritance in human prion diseases.


Assuntos
Doença de Gerstmann-Straussler-Scheinker , Doenças Priônicas , Príons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Doença de Gerstmann-Straussler-Scheinker/genética , Humanos , Camundongos , Mutação/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Príons/metabolismo , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...